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Abstract. Remote sensing is one primary tool for studying the interactions of
solar radiation with the atmosphere and surface and their influence on the
Earth radiation balance. During the past three decades the radiation measured
from satellite, aircraft and ground have been employed successfully for
characterizing radiative properties of land, ocean, atmospheric gases, aerosols,
clouds, etc. One of the challenges in implementing remote sensing is the
development of a reliable inversion procedure required for deriving
information about the atmospheric or surface component interaction with the
measured radiation. The inversion is particularly crucial and demanding for
interpreting high complexity measurements where many unknowns should be
derived simultaneously. Therefore the deployment of remote-sensing sensors
of the next generation with diverse observational capabilities inevitably would
be coupled with significant investments into inverse-algorithm development.
Numerous publications offer a wide diversity of inversion methodologies
suggesting somewhat different inversion methods. Such uncertainty in
methodological guidance leads to excessive dependence of inversion
algorithms on the personalized input and preferences of the developer. This
study is an attempt to outline unified principles addressing such important
aspects of inversion optimization as accounting for errors in the data used,
inverting multi-source data with different levels of accuracy, accounting for a
priori and ancillary information, estimating retrieval errors, clarifying
potential of employing different mathematical inverse operations  (e.g.
comparing iterative versus matrix inversion), accelerating iterative
convergence, etc. The described concept uses the principles of statistical
estimation and suggests a generalized multi-term least-square-type formulation
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that complementarily unites advantages of a variety of practical inversion
approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman
filters, Gauss-Newton and Levenberg-Marquardt iterations, etc. The proposed
methodology has resulted from the multi-year efforts of developing inversion
algorithms for retrieving comprehensive aerosol properties from ground-based
remote sensing observations.

1. Introduction

For the last few decades remote sensing has provided the scientific community
with the global distribution of climatically important information about
radiative properties of the Earth atmosphere and surface. Future expectations
are increasingly high, because remote sensing still has significant potential in
improving the volume and accuracy of retrieved information. The indirect
nature of observations is an inherent feature of remote-sensing measurements.
Indeed, the atmospheric radiation measured from space, ground, etc. is a result
of complex interactions of incident solar light with atmospheric components
and surface scattering and absorbing radiation. Retrieving optical and radiative
properties of natural objects from radiation measurements demands two types
of development efforts. First, a capability of modeling atmospheric
characteristics is required. That capability is vital for building a so-called
“forward model” retrieval algorithm that adequately simulates the measured
atmospheric radiation coming from the atmospheric or surface objects with
known properties. The second necessary component of retrieval is the so-
called “inversion” procedure that utilizes an inverse transformation by
recovering unknown input parameters of the forward model from known
output of the forward model. Investing in a particular atmospheric remote-
sensing approach is motivated by the achievements in atmospheric radiation
modeling. Therefore, in remote sensing applications the forward-model
development usually is feasible and the main challenge is finding the most
accurate model satisfying time constraints of operational processing. On the
other hand, establishing a strategy for developing the best inversion method is
a more convoluted task, in that the evaluation of inversion accuracy is an
ambiguous question, especially for the case of simultaneous retrieval of many
unknowns; - for example, replacing a scalar light-scattering model with a
vector one that accounts for polarization results in accuracy improvements in
scattered light reproduction.  In contrast, identifying a preference between
inversion methods is always rather uncertain. A change of inversion scheme in
practical multi-parametric retrieval usually is accompanied by rather complex
consequences: retrieval accuracy may improve for one parameter but degrade
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for another parameter and that situation may alter for different observation
configurations and circumstances. Hence, identifying a preferable inversion
method from comparative tests is not always fruitful and should rely on
consideration of rather fundamental principles of inversion optimization.
However, existence of a very broad diversity of inversion methodologies
leaves the researcher freedom in implementing the actual retrieval. Indeed,
there are numerous publications describing different inversion techniques and
procedures. On the other hand, the comparisons of different inverse
methodologies are rather sparse and often limited to a particular application.
Consequently, anyone presently designing a practical retrieval algorithm has to
review rather fundamental principles of inversion optimization and make a
number of principal decisions and choices in inversion implementation that
largely predetermine the successes and limitations of the resulting retrieval.
Obviously such “personalization” of inversion implementation raises
ambiguity and diversification of retrieval development. For that reason, this
study is aimed at analyzing the main principles of inversion optimization with
an attempt to outline generalized guidance for inversion development in
remote sensing. The considerations and results presented are based on the
multi-year efforts of developing inversion algorithms for retrieving
comprehensive properties of atmospheric aerosol from light-scattering
observations. The proposed concept pursues the idea of establishing a unified
formulation combining complementary principles of different inversion
approaches.

Detailed reviews of inversion methods can be found in various textbooks
[1-6]. However, the details given and descriptions of well established
inversion procedures do not provide the reader with sufficient explanations as
to which method and why it should be chosen for a particular application.
Such a situation is partly a result of the fact that most innovations were
proposed under pressure of different specific practical needs and, therefore,
derived in scopes of rather different approaches. The inversion strategy
described here was proposed and refined in the previous studies [7-9].  The
approach is focused on clarifying the connection between different inversion
methods established in atmospheric optics and unifying the key ideas of these
methods into a single inversion procedure.  This strategy is expected to be
helpful for building optimized and flexible inversion techniques inheriting
benefits from of a variety of methods well established in different applications.
For example, considerations of this chapter reveal important connections of
retrieval algorithms designed with the inversion methods widely adopted in
atmospheric remote sensing and other geophysical applications, such as the
methods given by Kalman [10], Phillips [11], Tikhonov [12], Twomey [13,14],
Strand and Westwater [15-16], Chahine [17], Turchin and Nozik [18], Rodgers
[19], etc.
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Following the elaborations by study  [9], the following aspects of inversion
optimization will be outlined in the order of their importance and validity,
starting from most important and most proven: (i) Optimizing the algorithm to
the presence of measurement errors; (ii) Optimizing inclusion of a priori and
ancillary data; (iii) improving performance of key mathematical operations
(linear inversion, non-iteration convergence, etc.); and (iv) adjusting
conventional assumption of noise-distribution to account for parameter non-
negativity and data redundancy. Each of these aspects is discussed in
numerous theoretical and practical studies. However, as a rule, theoretical
analyses of inversions overemphasize single aspects of retrieval optimization
and therefore the resulting conclusions have limited applicability. This study
pursues the idea of formulating an inversion procedure based on harmonized
consideration of different aspects of algorithm performance rather than on
opposing one principle against another. With this purpose, the present chapter
outlines the importance of addressing all above-listed aspects by specifying the
role of each optimization principle in the development of successful inversion.

2. Basic inversions of linear systems

Commonly, remote sensing methods are set up to derive N a unknown
parameters ai from N f discrete observations fj and a corresponding retrieval
algorithm should solve the following system of equations:

f* = f(a)+ Δf*,   (1)

 where f* is a vector of the measurements fj, Δf* is a vector of measurement
errors Δfj

* = f j
* -  fj

real, a is a vector of unknowns ai, f(a) denotes a physical
forward model that allows adequate simulations of observations fj from
predefined parameters ai.. In remote-sensing applications, f* usually includes
the atmospheric radiation measurements conducted from ground, satellite or
aircraft using detectors with various spectral, angular and polarimetric
capabilities. The vector of unknowns a  may include various parameters
describing the optical properties of atmospheric or surface compounds, such as
concentrations of gases and their vertical distributions, parameters describing
composition and size distribution of aerosol, land or ocean reflectance, etc.
Correspondingly, f(a) is usually modeled by solving the radiative-transfer
equation accounting for transformations of solar radiation interacting with the
atmosphere and the surface. Such physical models f(a) do not have an
analytical inverse transformation and the system of Eq. (1) should be solved
numerically. For example, in the simplest physical model f(a ) with
characteristics fj being linearly dependent on ai (i.e., fi = ∑ i=1…Na Kji ai), Eq. (1)
is reduced to the system of linear equations:

f* = f + Δf*  = K a,  (2)
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 where K is the matrix of the  coefficients Kji. If the number of measurements
is equal to the number of unknowns, the solution of Eq. (2) is straightforward:

    

€ 

ˆ a = K−1 f *  (Nf  = Na ),  (3)

where K-1 denotes the inverse matrix operator. For the matrix K  with the
linearly independent and non-zero rows, Eq. (3) gives a unique solution that
always provides the equality of the left and right sides in Eq. (2), i.e. 

€ 

f * =  K ˆ a .
Equation (2) also can be solved by other methods without direct

implementation of matrix inverse transformation K-1, for example, by means
of linear iterations:

ap+1 = ap – Hp(K ap - f*). (4)

There are a number of the methods that use linear iterations, for example, the
known Jacobi and Gauss-Seidel techniques, steepest descent method, etc.
differing by the definition of matrix H p. This matrix should provide
convergence of the iterations to a solution ap+1 →  â attaining equality in Eq.
(2):

K ap+1 - f* = K (ap – Hp (K ap - f*)) - f* = (I- KHp) (K ap-1 - f*)
       = (I- KHp) (I- KHp-1)…(I- KH0) (K a0 - f*) ⇒ 0  (for p → ∞),     (4a)

where I is the unity matrix. Thus, the iterations converge from any initial
guess a0 to â if the following sequential transformation leads to a zero matrix:

 (I- KHp) (I- KHp-1)…(I- KH0) ⇒ 0       (for p → ∞).          (4b)

Obviously, if Hp = K-1, Eq. (4) converges at the first iteration and is fully
identical to Eq. (3). An important advantage of iterative techniques is that
iterations are stable even if Eq. (2) does not have a unique solution. Indeed, if
the matrix K has linearly dependent rows, applying Eq. (2) is problematic,
since matrix K-1 does not exist. Iterating Eq. (4) works even in such a case,
with the difference that use of Eq. (4) leads to one of many possible solutions
that depend on initial guess.

Equation (2) also can be solved by other methods (see [4]) technically
different from Eqs. (3)- (4). All these methods are equivalent in the sense that
they lead to the same solution â providing the equality in Eq. (2). Therefore,
depending on the developer’s preference and the requirements of the particular
application, any of these methods can be employed in the retrieval algorithm
(see discussion in Section 4.8).

3. Solution optimization in presence of measurement errors

In many remote-sensing applications the number of measurements Nf exceeds
the number of retrieved parameters Na. This is characteristic of new advanced
sensors with multi-spectral, multi-angle [20-23, etc.], and polarimetric
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capabilities [24-26, etc.]. In addition to the increased volume of physical
information, this redundancy (Nf  > N a), allows for minimization of retrieval
errors in the presence of random noise in the measurement.

The errors Δf* in Eq. (2) may have the following two components:

 Δf* = Δf*sys + Δf*ran ,      (5)

where Δf*sys – systematic errors, which are repeatable in different
measurement realizations and  Δf*ran  – random errors, which differ in the
different measurements, i. e.:

 <Δf*sys>  = b ≠ 0   and   <Δf*ran >  = 0 ,        (6)

where <…>  denotes averaging over measurement realizations, b is the
average systematic error or so-called bias. The correction of the measured data
for the bias is straightforward provided that b is identified and evaluated. The
correction of the measurements for random errors is not possible, because their
values are unpredictable in each individual act of measurement. Nevertheless,
the statistical properties of the random errors can be used to improve the
statistical properties of the retrievals.

The statistical properties of random errors are characterized by P(Δf*) -
Probability Density Function (PDF) that provides the probabilities of
observing various realizations of the errors Δf* = f* - freal. The retrieved
estimates should be close to the real values of unknowns, i.e. â ≈ areal. Using
an adequate forward model [freal = f(areal)] the errors Δf* can be modeled as

 Δf* = f* - f(areal) ≈ Δ

€ 

ˆ f * = f* - f(â).      (7)

The known properties of the PDF can be used to improve the solution â.
Indeed, the modeled measurement errors Δ

€ 

ˆ f * = f* - f(â) for â ≈ areal should
reproduce the known statistical properties of measurement errors as closely as
possible. The agreement of modeled Δ

€ 

ˆ f * with known error distribution can be
evaluated using the known PDF as a function of modeled errors P(Δ

€ 

ˆ f *): the
higher P(Δ

€ 

ˆ f *) the closer the modeled Δ

€ 

ˆ f * to the known statistical properties.
Thus, the best solution âbest should result in modeled errors corresponding to
the most probable error realization, i.e. to PDF maximum:

P(Δ

€ 

ˆ f *) = P(f(â) - f*) = P(f(â)f*) = max. (8)

In essence, this principle is the well-known Method of Maximum Likelihood
(MML). The PDF written as a function of measurements P(f(â)f*) is called
Likelihood Function. The MML is one of the strategic principles of statistical
estimation that provides statistically the best solution in many senses [27].  For
example, the asymptotical error distribution (for infinite number of Δf*
realizations) of MML estimates â have the smallest possible variances of Δâi.
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Most statistical properties of the MML solution remain optimum for a limited
number of observations [27].

The implementation of MML in the actual retrieval requires an assumption
on PDF of errors Δf*. The normal (or Gaussian) function is most appropriate
for describing random noise resulting from numerous additive factors:

€ 

P f a( ) f∗( ) = 2π( )m det C( ) 
 
  

 
 
−1/ 2

exp − 1
2
f a( )− f∗( )TC−1 f a( )− f∗( ) 

 
 

 

 
 , (9)

where T denotes matrix transposition, C is the covariance matrix of the vector
f*; det(C) denotes the determinant of C, and m is the dimension of the vectors
f and f*. Detailed discussions on the reasoning for using a normal PDF as the
best noise assumption can be found in many textbooks [e.g. 3,27].

The maximum of the PDF exponential term in Eq. (9) corresponds to the
minimum of the quadratic form in the exponent.  Therefore, the MML solution
is a vector â corresponding to the minimum of the following quadratic form:

€ 

Ψ a( ) =
1
2
(f a( )− f∗)TC−1(f a( )− f∗) =min . (10)

Thus, with the assumption of normal noise Δf*, the MML principle requires
the search for a minimum in the product of the squared terms of (f(a) - f*) in
Eq. (10). This is the basis for the widely known Least Square Method (LSM).
The minimum of the quadratic form 

€ 

Ψ a( )  corresponds to a point with a zero
gradient 

€ 

∇Ψ a( ) , i.e. to a point where all partial derivatives of

€ 

Ψ a( )  are equal to
zero:

€ 

∇Ψ a( ) =
∂Ψ a( )
∂ai

= 0,     (i = 1,..,Na ) . (11a)

The gradient of

€ 

Ψ a( )  can be written as (detailed derivations can be found
elsewhere [28-29, etc.]):

∇Ψ(a) = Ka
TC-1 f(a) - Ka

TC-1 f*= Ka
TC-1 (f(a) - f*). (11b)

Ka is a matrix of first partial derivatives in vicinity of a, i.e. 

€ 

Ka{ } ji =∂f j ∂ai a .
Correspondingly, for linear forward models, ( f (a ) = K  a), Eq. (11a) is
equivalent to the following system:

KT C-1 K a = KT C-1 f*. (11c)

Using matrix inversion, the LSM solution can be written as

â = (KT C-1 K)-1  KT C-1 f*.  (12)

This formula is valid if Eq. (2) has a unique solution, i.e. if det(KT C-1 K) ≠ 0.
The errors Δâ of the estimate â are normally distributed and have random and
systematic components resulting from Δf*sys and Δf*ran in the measurements:
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Δâ = Δâran + Δâsys = (KT C-1 K)-1 KT C-1 (Δf*ran+Δf*sys).  (13)

As follows from Eq. (6) the mean <Δâ> is the resultant of measurement bias:

âbias  = <Δâ>  =  <Δâsys> = (KT C-1 K)-1  KT C-1 b.   (14)

The covariance matrices of the estimate errors Δâ also have random and
systematic components:

Câ = CΔâ(ran) + (âbias) (âbias)T = (KT C-1 K)-1 + (âbias) (âbias)T. (15)

This equation is derived as follows:

Câ = <Δâ(Δâ)T> = <(Δâran +Δâsys)(Δâran +Δâsys)T> = 

    = <Δâran(Δâran)T> + <Δâsys(Δâsys)T> = CΔâ(ran) + (âbias) (âbias)T ,

where

CΔâ(ran) =<Δâran(Δâran)T>=<(KT C-1K)-1KTC-1Δf*ran((KT C-1K)-1KTC-1Δf*ran)T>

=(KT C-1 K)-1KT C-1 <Δf*ran(Δf*ran)> C-1 K(KT C-1K)-1 =(KT C-1 K)-1.

The optimality of LSM solution â is given by the Cramer-Rao inequality [27]:

<(Δg)2> = < g TΔã(g TΔã)T> = g TΔã(Δã)Tg = g TCã g ≥ g TCLSM g ,   (16)

where ã denotes any estimate of the vector a with covariance of random errors
Cã, CLSM is the covariance matrix of LSM estimates [Eq. (15)], g  is a
characteristic linear dependence on a  (i.e. g  = gTa , g  is a vector of
coefficients). Thus, according to the Cramer-Rao  inequality the LSM
estimates â have the smallest variances of random errors and, moreover, the
estimate gTâ of any function g obtained using â also has the smallest variance
determined by Eq. (16), i.e. any product gTâ of the LSM estimates â is also
optimum . These accuracy limits are related to the definition of Fisher
information [27].

The values of minimized quadratic form of Ψ(â) [Eq. (10)] follows a χ2

distribution with m-n degrees of freedom, i.e. the mean minimum is [27,30]:

€ 

2Ψ a( ) = (ˆ f − f∗)TC−1(ˆ f − f∗) = Δf∗
T

C−1Δf∗ − Δˆ a TC ˆ a 
−1Δˆ a =  N f −Na ,   (17)

where 

€ 

ˆ f = f ˆ a ( ) , Nf = rank(C) and Na = rank(Câ). For the case when both

measurement and estimate vectors have only statistically independent elements
then Nf is equal to the number of measurements and Na is equal to the number
of retrieved parameters. The statistical property given by Eq. (17) is used to
validate the assumptions on the noise Δ

€ 

ˆ f * in measurement and accuracy of the
forward model (see Sections 4,6 and 7).
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4. A priori constrains

In spite of its optimization properties, the basic LSM given by Eq. (12) is not
often used in remote sensing. The modeling of interactions of solar light with
the atmosphere and the surface requires a complex theoretical formalism with
a large number of internal parameters. The integrative character and confines
in viewing geometries limit the sensitivity of remote measurements to unique
variations of each internal parameter in the radiative model. Therefore, the
remote sensing of natural objects, in general, is inherently underdetermined
and belongs to a class of so-called ill-posed problems. In fact, the frequent
appearance of ill-posed problems in remote sensing and applied optics
stipulated the development of methodologies that constrain standard inversion
algorithms in order to overcome solution instability.

In terms of considerations given in Section 3, ill-posed problems have a
non-unique and/or an unstable solution. For a non-unique solution, the matrix
KTC-1K on the left side of Eq. (11c) has linearly dependent rows (and
columns, since it is symmetrical), i.e.   det(KTC-1K)=0 (degenerated matrix)
and the inverse operator (KTC-1K)-1 does not exist. For a quasi-degenerated
matrix (det(KTC-1K)→ 0) the inverse operator (KTC-1K)-1 exists. However, in
this case, the covariances of the retrieval errors [Eq. (15)] become large due to
uncertainty of the inverse operator:

{Câ }ii~ {(KT C-1 K)-1}ii
 → ∞    (for det(KT C-1 K) → 0). (18)

4.1 Basic formulations for constrained inversion

Constraining inversions by a priori information is an essential tool for
achieving a unique and stable solution of an ill-posed problem. Most remote-
sensing inverse techniques are based on the following equations:

â = (KT K + γ Ω)-1 KT f*,   (19)

â = (KT K + γ Ι)-1  (KT f* + γ a*).        (20)

These equations originated the papers by Phillips [11], Tikhonov [12] and
Twomey [13]. Equation (19) constrains the solution â by minimizing its k-th
differences Δk :

       Δ1 = â i+1 - â i  ,                                   (k=1),
      Δ2 = â i+2 - 2 â i+1 + â i ,             (k=2),         (21a)

        Δ3 = â i+3 - 3 â i+2 + 3 â i+1 - â i ,       (k=3).

The minimization of differences in Eq. (19) usually is considered [e.g.
12,13,18] to be an implicit constraint on derivatives. The correspondent
smoothness matrix Ω in Eq. (19) can be written as
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Ω = (Sk)T(Sk) ,        (21b)

 where Sk is the matrix of the k-th differences (i.e. Δk = Sk â). For example, S2

(k=2) is:

€ 

S2 =

1 - 2   1    0   ...
0   1 - 2    1   0  ...
0   0    1 - 2   1  0  ...
...........................................
......................... 0   1 - 2  1

 

 

 
 
 
 

 

 

 
 
 
 

. (21c)

Correspondingly, for minimization of the second differences (introduced by
Phillips [11]), the required smoothing matrix (written by Twomey [13]) is

€ 

Ω=

1 −2 1 0 0 ...
−2 5 −4 1 0 0 ...
1 −4 6 4 1 0 0 ...
0 1 −4 6 4 1 0 0 ...

...
... 0 1 −4 5 −2

... 0 1 −2 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

. (21d)

Twomey [13] also suggested employing the third differences in Eq. (19).
Tikhonov’s formulations consider a generalized definition of the smoothing or
“regularization” function that usually is formulated via limitations on
magnitudes of unknowns and/or their first differences, i.e. the smoothness
matrix Ω defined as a sum of the unity matrix (matrix of “zero differences”)
and matrix of first differences or one of these matrices simply used alone
[2,5,12,31]. Equation (20) formulated by Twomey [13] constrains the solution
â to its a priori estimates a* (i.e. formally constrains “zero differences”). The
Lagrange multiplier γ in Eqs. (20-21) is defined as a nonnegative parameter
that controls the strength of a priori constraints relative to the contribution of
the measurements.  The value of γ usually is evaluated by numerical tests and
sensitivity studies (Section 4.6).

Unlike LSM, Eqs. (20-21) were derived without direct consideration of
noise statistics. Nevertheless, Eqs. (20-21) are  based on the minimization of
quadratic norms of deviations (f(a)- f*) which is formally equivalent to
assuming normal noise with unit covariance matrix (i.e. C = I). Thus, Eqs.
(20-21)  minimize the quadratic forms that have the additional term

€ 

2Ψ' ˆ a ( ) = (f ( ˆ a )− f∗)T (f ( ˆ a )− f∗) +γ  ˆ a TΩ ˆ a = min , (22a)

€ 

2Ψ' ˆ a ( ) = (f ( ˆ a )− f∗)T (f ( ˆ a )− f∗) +γ  ( ˆ a − a∗ )T ( ˆ a − a∗ ) = min . (22b)

The inclusion of a second a priori term [compare to Eq. (10)] into the
minimization process results in the fact that Eqs. (19)-(20) provide stable
solutions even for ill-posed problems (det(KT K) →  0). Formally it can be
explained by the fact that an addition of the diagonal (I)  or quasi-diagonal
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(Ω )  matrices to (KT K) results in non-degenerated matrices: det(KT K + γ
Ι) > 0 and det(KT K + γΩ) > 0.

In atmospheric remote-sensing applications, the statistical interpretation of
constrained inversion often is associated with the studies by Strand and
Westwater [15-16] and Rodgers [19] and the following formulations:

â = (KT C-1 K + Ca*
-1)-1 (KT C-1 f*+ Ca*

-1 a*)   and (23)

â = a* - Ca*
 KT (C + K Ca*

 KT )-1 (K a*- f*),  (24)

where a* is a normally distributed vector of a priori estimates called a “virtual
solution” [19]. Equation (23) has an obvious similarity to Eqs. (19-20). Indeed,
Eq. (23) can be transformed to Eq. (19) if Ca*

-1 = Ω and a* = 0 and to Eq. (20)
if C a*= (1/γ) Ι. It should be noted that there are other statistical formulas for
constrained inversions, for example, a statistical equivalent of Eq. (19) is
discussed in studies [18, 32].

Equation (24) is fully equivalent to Eq. (23). This type of constrained
inversion is popular (see [19]) in applications of satellite remote sensing for
retrieving vertical profiles of atmospheric properties (pressure, temperature,
gaseous concentrations, etc.). Equation (24) is also widely used in engineering
(e.g. see textbook [30]) and other applications [33], such as assimilation of
geophysical parameters [34], where Eq. (24) is known as a “Kalman filter”
named after the author [10] who originated the technique.

The main difference between Eq. (23) and Eq. (24) is that the matrix
(KTC-1K +  Ca*

-1) inverted in Eq. (23) has dimension N f (number of
measurements)  while (C + KCa*KT) inverted  in Eq. (24) has the dimension Na

(number of retrieved parameters). Therefore, Eq. (23-24) are fully equivalent
for the situation when N f  = N a and Eq. (23) generally is preferable for
inverting redundant measurements (Nf  > N a); whereas, Eq. (24) is preferable
when the measurement set is underdetermined (Nf < Na). Indeed, in Eq. (23)
[similarly as for Eqs. (19-20)], the estimate â mostly is determined by the
measurement term KT C-1 f* and minor a priori terms only are expected to
provide uniqueness and stability of the solution. In contrast, in Eq. (24) the
solution â is expressed in the form of an a priori estimate a* corrected or
“filtered” by measurements, which is the situation when the small number
measurements Nf (Nf < Na) cannot fully determine the set of unknowns a, but
can improve a priori assumed values a*.

4.2 Statistically optimized inversion of multi-source data

The similarities of the formulas for constrained inversion with basic non-
constrained LSM were mentioned already in the previous section. This section
further explores the use of statistical principles for implementing constrained
inversion by formulating a statistically optimized inversion of multi-source
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data that follows the developments [7-9]. Such an approach allows
generalizing various inversion formulas into a single formalism.

Formally, both measured and a priori data can be written as

fk*= fk(a)+ Δfk*,   (k=1, 2,…,K), (25)

where index k denotes different data sets (“sources”). This assumes that the
data from the same source have similar error structure independent of errors in
the data from other sources. For example, direct Sun and diffuse sky radiances
have different magnitudes and are measured by sensors with a different
sensitivity, i.e., errors should be independent (due to different sensors) and
likely have different magnitudes. Similarly, a priori data are independent of
the measurements, i.e. they have errors with a different level of accuracy
uncorrelated with remote-sensing errors. Formally, the statistical independence
of fk* means that the covariance matrix of joint data f* has array structure:

  

€ 

f∗ =

f1*

f2*

...
fK*

 

 

 
 
 
  

 

 

 
 
 
  

       and     

€ 

Cf * =

C1 0 0 0
0 C2 0 0
... ... ... ...
0 0 0 CK

 

 

 
 
 
 

 

 

 
 
 
 

,  (26)

where f* is a vector-column with (f*)T = (f1* , f2* , …, fK*) T and Ck is the
covariance matrix  of the k-th data set fk*. Thus, from the formal viewpoint,
the only difference of Eq. (25) from Eq. (1) is that Eq. (25) explicitly outlines
an expectation of an array structure for the covariance matrix C f*. Such
explicit differentiation of the input data makes the retrieval more transparent
because the statistical optimization of the retrieval is driven by a covariance
matrix of random errors. It should, be noted that Eq. (25) does not assume any
relations between forward models fk(a), i.e. forward models fk(a) can be the
same or different.

Following Eq. (26), the PDF of joint data f* can be obtained by the simple
multiplication of the PDFs of data from all K sources:

€ 

P f a( ) f ∗( ) = P f1 a( ),.., fK a( ) f1∗ ,..., fK∗( ) = P fk a( ) fk∗( )
k=1

K
∏  . (27)

Then, under the assumptions of a normal PDF, one can write

€ 

P f a( ) f ∗( ) = P fk a( ) fk∗( )
k=1

K
∏  ~  exp −

1
2

fk a( ) − fk∗( )T
Ck( )−1 fk a( ) − fk∗( )

k=1

K
∑

 

 
 

 

 
 . (28)

Thus, for multi-source data, the LSM condition of Eq. (10) can be written as
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€ 

2Ψ a( ) =  fk a( ) − fk∗( )T
Ck( )−1 fk a( ) − fk∗( )

k=1

K
∑  =  min .     (29)

This condition does not prescribe the value of the minimum and, therefore, Eq.
(29) can be formulated via weight matrices:

 

€ 

2Ψ a( ) =  2  γ k  Ψk a( ) =
k=1

K
∑  γ k  fk a( ) − fk∗( )T

Wk( )−1 fk a( ) − fk∗( )
k=1

K
∑  =  min ,      (30a)

where

€ 

Wk =
1
ε k
2 Ck        and        

€ 

γ k =
ε1
2

ε k
2 .          (30b)

Here 

€ 

εk
2  is the first diagonal element of Ck, i.e. 

€ 

εk
2= { Ck}11. Although, Eqs.

(29) and (30) are equivalent, sometimes Eq. (30) is more convenient because
in Eq. (30) the parameters γk are weighting the contribution of each source
relative to the contribution of first data source (obviously, γ1 =1). Similarly,
using weight matrices instead of covariance matrices allows for the analysis of
the relative contribution of different measurements within each k-th data set.

The Minimum of the multi-term quadratic form Ψ(a) can be found by
solving the system of multi-term normal equations, i.e. Eq. (11) can be
transformed as

€ 

 γ k  K k( )T Wk( )−1 K k( )
k=1

K
∑   a =   γ k  K k( )T Wk( )−1fk*

k=1

K
∑ .     (31)

Correspondingly, using matrix inversion the multi-term equivalent of Eq.(12)
is

€ 

ˆ a =  γ k  K k( )T Wk( )−1 K k( )
k=1

K
∑
 

 
 

 

 
 

-1

   γ k  K k( )T Wk( )−1fk*
k=1

K
∑
 

 
 

 

 
 .          (32)

The generalization of the basic LSM by the multi-term Eqs. (31-32) is useful
for utilizing several observational data sets in a single flexible retrieval. In
addition, these equations can be a basis for unifying various techniques for
constrained inversion techniques. For example, constraining the solution by a
priori estimates can be considered as a joint inversion of two data sets. For
such case, Eq. (25) is

€ 

f1* = f1* a( ) +Δf1*

f2* = f2* a( ) +Δf2*
 
 
 

  
 ⇒  f

* = f* a( ) +Δf*

a* = a +Δa*

 
 
 

  
. (33)

The matrices Kk and Wk required in Eq. (32) are the following:

K1 = K,  and K2  = I,
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W1= W =(1/εf*)2 Cf*, and W2  = Wa* = (1/εa*)2 Ca*, (34a)

and the two-term Eq. (32) is

â = (KT W-1 K + γ Wa*
-1)-1 (KT W-1 f*+ γ Wa*

-1 a*).        (34b)

Equation (34) is an obvious analog of Eq. (23). This is not surprising because
both Eq. (23) and Eq. (24) are derived and explained in several previous
studies (e.g. [30, 19]) using the approach similar to the above considerations
[Eqs. (25-32)]. Also, Eq. (34b) can be trivially reduced to the Twomey formula
[Eq. (20)] by assuming the same accuracy for all measurements fj* (i.e. W = I)
and the same accuracy for all a priori estimates ai*  (i.e. Wa* =  I). It is
interesting that the use of weight matrices gives a clear statistical interpretation
to the Lagrange multiplier as the ratio of variances:

 

€ 

γ = εf *
2 εa*

2 . (34c)

Such an interpretation of the Lagrange multiplier is especially useful for cases
when both εf* and εa* have the same unites or they are unitless. For example, if
εf* and εa* are variances of relative errors: Δfj/ fj and Δai/ai. In such a situation,
a small value of the Lagrange multiplier γ logically is expected since a priori
knowledge is always less certain than actual measurements.

4.3 Statistical interpretation of smoothing constraints

Constraining the inversion to a smooth solution as given by Phillips –
Tikhonov – Twomey Eq. (19) has been proven to be very efficient in numerous
applications, e.g. [1, 13, 35-40]. In contrast to Eqs. (20, 23-24) where the
solution â is constrained to the actual values of a priori estimates a*, Eq. (19)
constrains only differences (derivatives) between elements of retrieved vector
â and does not restrict their values. Therefore, smoothing constraints may be
preferable in applications where a priori magnitudes of unknowns are
uncertain. For example, a smooth behavior with no sharp oscillations can
naturally be expected for atmospheric characteristic y(x) such as the size
distributions of aerosol concentrations. Correspondingly, filtering of the
solutions with strong oscillations of ai = y(xi) (i=1, …,Na) appears to be a
logical constraint, while finding appropriate a priori estimates  ai* = y*(xi)
would be problematic because the magnitudes of ai = y(xi) (i.e. aerosol loading)
may vary by ~ 100 times. Retrieval of vertical profiles of atmospheric gases
and aerosol concentrations can be another example where some smoothness in
the behavior of unknowns ai = y(xi) can be expected.

Studies [11-13] originated Eq. (19) did not imply any statistical meaning to
the smoothness constrains.  Later studies suggest some statistical interpretation
to smoothing constraints. For example, studies [18, 32] considered the
smoothness matrix Ω as the inverse matrix to the covariance matrix of a priori
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solutions. Rodgers [19] related smoothing constraints with the non-diagonal
structure of the covariance matrix Ca* of the a priori estimates. The present
analysis (as follows from [9]) explicitly considers smoothness constraints as a
priori estimates of the derivatives of the retrieved characteristic y(xi).

The values of m-th derivatives gm of the function y(x) characterize the
degree of its non-linearity and, therefore, can be used as a measure of y(x)
smoothness. For example, smooth functions y(x), such as a constant, straight
line, parabola, etc. can be identified by m-th derivatives as follows:

€ 

g
1

(x) = dy(x) dx = 0     ⇒    y1(x) = C ; 

g2 (x) = d2y(x) dx2 = 0  ⇒  y2 (x) = B x +  C ; 
g3(x) = d3y(x) dx3 = 0  ⇒  y3(x) =  A x 2 +  B x +  C 

. (35)

These derivatives gm can be approximated by differences between values of the
function ai = y(xi)  in Na discrete points xi as:

€ 

dy xi'( )
dx

 ≈  
Δ1y xi( )
Δ1xi

  =  
y xi +Δxi( )− y xi( )

Δ1xi
 =  

y xi+1( )− y xi( )
Δ1xi

 ; 

d2y xi''( )
dx2  ≈  

Δ2y xi( )
Δ2 xi( )

 =  
Δ1y xi+1( ) /Δ1 xi+1( )−Δ1y xi( ) /Δ1 xi( )

Δ1xi +Δ1xi+1( ) /2
 = ... ; 

d3y xi'''( )
dz3  ≈  

Δ3y xi( )
Δ3 xi( )

 =  
Δ2y xi+1( ) /Δ2 xi+1( )−Δ2y xi( ) /Δ2 xi( )

Δ2 xi( ) +Δ2 xi+1( )( ) /2
 =  ... ;

,  (36)

where

∆1(xi) =xi+1-xi;   ∆2(xi)=(∆1(xi) +∆1(xi+1))/2; ∆3(xi) = (∆2(xi) +∆2(xi+1))/2;

xi’ = xi +∆1(xi)/2;  xi’’ = xi +(∆1(xi)+ ∆2(xi))/2;  xi’’ = xi +(∆1(xi)+ ∆2(xi)+ ∆3(xi))/2.

In retrievals of the function y(xi) in Na discrete points xi, the expectations of
limited derivatives of y(x) can be employed explicitly as smoothness
constraints. Namely, if the retrieved function is expected to be close to a
constant, straight line, parabola, etc., one can use zero m-th derivatives, as
follows from Eq. (35), as  a priori estimates: gm* = 0. Using this knowledge as
a second source of information about ai = y(xi), the multi-source Eq. (25) can
be written:

€ 

f1* = f1* a( ) +Δf1*

f2* = f2* a( ) +Δf2*
 
 
 

  
 ⇒  

f* = f* a( ) +Δf*

gm
* = gm a( ) +Δgm

* ⇒
 
 
 

  
 
f* = f* a( ) +Δf*

0* =Gma +Δg
*

 
 
 

  
,  (37)

where gm is a vector of m-th derivatives (gm)i = gm(xi) (i=m+1,…,Na), Gm is the
matrix of the coefficients required for matrix form gm = Gm a of Eq. (32). The
errors ∆g* reflect the uncertainty in the knowledge of the deviations of y(x)
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from the assumed constant, straight line, parabola, etc. Correspondingly,
assuming that ∆g* have a normal distribution with the covariance matrix Cg*,
one can use multi-term LSM Eq. (32) with the following matrices Kk and Wk:

K1 = K,  and K2  = Gm,

W1= W =(1/εf*)2 Cf*, and W2  = Wg* = (1/εg*)2 Cg*, (38a)

and the two-term Eq. (32), solving Eq. (37), has the form:

    â = (KT W-1 K + γ Gm
T Wg*

-1Gm )-1 KT W-1 f*,      (38b)

where the multiplier γ is defined as

€ 

γ =ε f *
2 εg*

2 , (38c)

where

€ 

εg*
2  is the first diagonal element of Cg*, i.e. 

€ 

εg*
2 = {Cg*}11.

Thus, Eq. (38b) minimizes the quadratic form [Eq. (30a)] with two terms
(k=1,2), where the second term

€ 

Ψ2 a( )  represents a priori constraints on the m-
th derivatives. The inclusion of 

€ 

Ψ2 a( )  in the minimization can be considered
as applying limitations on the quadratic norm of m-th derivatives of y(x) that
are commonly used as  a measure of smoothness (e. g. see [32]). Indeed, if one
assumes the diagonal covariance matrix Cg* with diagonal elements

 

€ 

Cg*{ }ii ~ 1 Δm xi( )   ⇒   Wg*{ }ii = Cg*{ }ii Cg*{ }11
= Δm x1( )( ) Δm xi( )( ) ,  (38d)

then the quadratic term 

€ 

Ψ2 a( )  can be considered as an estimate  of the norm
of the m-th derivatives obtained using the values of y(x) at Na discrete points xi:

€ 

bm =
dmy x( )
dmx

 

 

 
 

 

 

 
 ∫
2

dx ≈
Δmy xi( )
Δm xi( )

 

 

 
 

 

 

 
 

2

i=m+1

Na

∑ Δm xi( ) = a TGm
 TCg*

 −1Gma ~Ψ2 a( ) . (39)

By the means of this equation, one can relate the variance 

€ 

εg*
2  and the

multiplier γ to the expected value of the norm bm. Indeed, the estimates of the
derivatives (gm*= 0* = 0 + ∆g*) employed in Eq. (38) assume the following
mean value of the norm bm:

€ 

bm ≈  gm( ) i( )2

i=1

Na

∑ Δm xi( ) =  Cg*{ }iii=m+1

Na

∑  Δm xi( ) = Na−m( ) Δm x1( ) εg*
2 .  (40)

Then, the variance 

€ 

εg*
2  and the multiplier γ can be determined via 

€ 

bm as
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€ 

εg*
2 =

1
bm

 Na−m( )  Δm x1( )   ⇒     

€ 

γ =
ε f *

2

bm
 Na−m( )  Δm x1( ) . (41)

Equations (38) explicitly use the discrete approximation of derivatives via
ratios of the differences of the function ∆my(xi) and differences of the
arguments ∆m(xi), while Eq. (19) uses only differences of the function ∆my(xi).
Obviously, Eqs. (38) and Eq. (19) are nearly analogous when the differences
of arguments ∆m(xi) can be trivially accounted,  i.e. when y(x) is retrieved in Na
equidistant points xi+1 = xi +∆x (i=1,…,Na-1). For this situation, ∆m(xi) = ∆x and
the derivatives and differences of the function y(x) differ by a constant only:

€ 

dmy x( )
dm x

≈
Δmy xi( )
Δx( )m

   =>   Gm = (∆x)-m Sm . (42)

Correspondingly, Eq. (37) can be written using the differences ∆my(xi):

€ 

 f* = f*(a) +Δf*

(Δma)* = Sma +Δ(Δma)*
 ⇒  

 
 
 

  
 f

* = f*(a) +Δf*

0* = Sma +Δm
*

 
 
 

  
,  (43)

where the vectors 0* and ∆m*  contain estimates of differences and  errors of
these estimates, respectively. Also, for equidistant points xi+1 =  xi +∆, the
covariance matrix C∆* of the differences differs from Cg* by a constant only:

€ 

 Δm xi( ) = Δx( )  ⇒   

€ 

Δxi( )−2mCΔ* =Cg*  and 

€ 

WΔ* =Wg* = 1 .     (44a)

Correspondingly, Eq. (40) relates C∆*  with the norm bm as follows:

€ 

bm ≈  Cg*{ }iii=m+1

Na

∑  Δm xi( ) =
1
Δx
 

 
 

 

 
 
2m+1

 CΔ*{ }ii
i=m+1

Na

∑ =
1
Δx
 

 
 

 

 
 
2m+1

Na−m( )εΔ*
2 .(44b)

Finally, Eqs. (38) can be reduced to the equivalent of Eq. (19) as:

K1 = K,  and K2  = Sm,

W1= W =(1/εf*)2 Cf*, and W2  = W∆* = (1/ε∆*)2 C∆* = 1 , (45a)

â = (KT W-1 K + γ Sm
T Sm )-1 KT W-1 f*,      (45b)

€ 

γ =
ε f *

2

εg*
2 =

ε f *
2

bm
 Na−m( ) Δx( )−2m+1. (45c)

where 

€ 

εΔ*
2  and 

€ 

εg*
2  are the first diagonal elements of the covariance matrices:

€ 

εΔ*
2 = {C∆*}11 and 

€ 

εg*
2 = {Cg*}11.
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Thus the multi-term LSM is a useful approach for deriving the Phillips –
Tikhonov – Twomey constrained inversion [Eq. (19)]. Also, it is shown above
that constraining the solution by adding a smoothness term in Eq. (19) can be
considered as explicit use of knowledge about the m-th derivatives of retrieved
functions y(x). In other words, the inversion of measurements f* is replaced by
the joint inversion of the measurements f* and “measured” derivatives gm*. In
the scope of such considerations, the Lagrange multiplier γ has a clear
quantitative interpretation [Eqs. (41) and (45)]. In addition, Eqs. (38-41) can
be used in situations where utilizing the original Eq. (19) is not transparent.
For example, Eq. (38) generalizes the use of smoothness constraints on
situations where the retrieved function y(x) is defined at points with non-
equidistant ordinates xi. Also Eq. (38) allows differentiating the smoothing
strength for different xi by weight matrix Wg*

 non-equal to unity matrix.
Although, using Wg*

 other than defined by Eq. (38d) requires modifications in
definition of 

€ 

εg*
2  and γ. Namely, in addition to

€ 

bm  the information about
smoothness differentiation should be available.  Illustrations of applying Eq.
(38) can be found in the manuscript [9], where the spectral dependence n(λi) of
the aerosol refractive index is retrieved in non-equidistant λ i fixed by the
measurement specifications.

4.4 Combining multiple a priori constraints in the inversion

The consideration of a priori constraints as an equal component in the multi-
term inversion Eqs. (30-32) is a useful tool for applying multiple constraints in
a retrieval algorithm. For example, a simultaneously constraining solution by
both a priori estimates and smoothness assumptions can be considered as
inversion of the data from three independent sources and Eq. (25) is

€ 

f1* = f1*(a) +Δf1*

f2
* = f2

*(a) +Δf2
*

f3* = f3*(a) +Δf3*

 

 
  

 
 
 

 ⇒  
f* = f*(a) +Δf*

0* = Sm +Δ(Δma)*

a* = a +Δa*

 

 
 

 
 

. (46)

The matrices Kk and Wk required in Eq. (32) are the following:

K1 = K;   K2  = Sm; and  K3  = I,

W1= W =(1/εf*)2 Cf*; W2  = W∆* = 1; and W3  = Wa* = (1/εa*)2 Ca*, (47a)

and three-term Eq. (32) is:

â = (KT W-1 K + γ2 Sm
T Sm + γ3 Wa*

-1)-1 (KT W-1 f*+ γ3 Wa*
-1 a*),      (47b)

€ 

γ 2 =
ε f*

2

εg*
2 =

ε f*
2

bm
 Na−m( ) Δx( )−2m+1  and 

€ 

γ 3 =
ε f *
2

εg*
2 . (47c)
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This equation minimizes three quadratic forms simultaneously:

€ 

2Ψ ˆ a ( ) = 2 γ kΨk ˆ a ( ) =
k=1

3
∑  f ˆ a ( )− f∗( )

T
W−1 f ˆ a ( )− f∗( ) +γ 2 ˆ a TΩm

  ˆ a +γ 3ˆ a TWa*
−1ˆ a = min .  (48)

Thus, applying multiple a priori constraints is straightforward using multi-
term LSM formulations, while multiple a priori constraints usually are not
considered in the scope of basic formulas [Eqs. (19-20) and (23-24)].

4.5 Error evaluation

Equations (13-15) estimating errors of LSM solutions can be generalized in
the case of multi-term solutions by Eqs. (31-32) as

Câ = CΔâ(ran) + (âbias) (âbias)T, (49a)

€ 

ˆ a bias =  γ k  K k( )T Wk( )−1 K k( )
k=1

K
∑
 

 
 

 

 
 

-1

   γ k  K k( )T Wk( )−1bk
*

k=1

K
∑
 

 
 

 

 
 , (49b)

€ 

CΔ ˆ a ( ran)
= Δ ˆ a (ran ) Δˆ a (ran )( )T

=  γ k  K k( )T Wk( )−1 K k( )
k=1

K
∑
 

 
 

 

 
 

-1

  ε1
2, (49c)

where bk denotes the bias vector in the k-th data set fk..
For example, for the three term solution by Eqs. (47), the retrieval bias âbias

and the covariance matrix of random errors CΔâ(ran) can be written as

âbias = (KT W-1 K+γ2 Ωm +γ3 Wa*
-1)-1 (KT W-1 bf*+γ2 Ωm b∆*+γ3 Wa*

-1 ba*)    (50a)

CΔâ(ran)  = (KT W-1 K + γ2 Ωm  + γ3 Wa*
-1)-1 εf*

2, (50b)

bf =<f* - f(areal)>=<Δf*>; {b∆*}ii = (Δx)2m

€ 

dmy xi( ) dmx( ) real ; ba*= areal–a*, (50c)

where bf  is a bias in the measurements f* or in the forward model: freal -
f(areal); Ωm =  Sm

TSm  and vector b∆ (with elements {b∆*}ii) denotes a bias
introduced by assuming zeros 0* as estimates of m-th differences; ba*is a bias
in a priori estimates a*.

Equations (50) are helpful for analyzing the effects of constraints on the
solution. It follows from Eq. (50b) that by strengthening a priori constraints
(by γ2 and γ3), one formally can suppress the random errors of the retrieval to
any desirable level.  However, Eq. (50a)  shows that, if a priori biases are non-
zero, increasing γ2 and γ3 leads to increasing systematic errors. Therefore, a
priori constraints are useful only in the case when the increase of the
systematic component (âbias)(âbias)T does not exceed  the decrease of the
random component of the retrieval errors in Eq. (49). Unfortunately, in
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practice the a priori biases are uncertain and, therefore, the selection of
optimum a priori constraints is a very challenging issue in inversion
developments. Generally, a priori estimates a* always have non-zero bias ba*=
areal–a*. In contrast, the smoothness constraints are likely unbiased (i.e. b∆*→
0), because for smooth functions, m-derivatives are close to zero. This is why
smoothness constraints are preferable for the retrieval of smooth functions.

It should be noted that the multi-term estimates [Eqs. (32), (34), (47)]
retain the optimality of LSM estimates, i.e. they have smallest errors as
determined by the Cramer-Rao inequality, Eq. (16). However, the Cramer-
Rao  inequality is valid only if all assumptions about noise in both the
measurements and the a priori terms are correct. Therefore, the validation of
the assumptions is important, while problematic in reality. A useful
consistency check can be performed using the achieved value of the
minimized quadratic form Ψ(â) [Eq. (30)].  For example, in case of zero
biases, the minimum value of the three-term Ψ (â) [Eq. (48)] has a χ 2

distribution with mean

€ 

2Ψ ˆ a ( )( )min = 2 Ψi ˆ a ( )i=1,...,3.∑ = ˆ f − f∗( )
T

W−1 ˆ f − f∗( ) +γ 2 ˆ a TΩm
  ˆ a +γ 3ˆ a T Wa*

−1 ˆ a =

= (N fi )i=1,...,3∑ −Na( ) ε1
2 = N f* +NΔ* +Na* −Na( )ε1

2 = N f*+Na −m( ) ε1
2

, (51)

where 

€ 

NΔ* = Na −m  and 

€ 

Na* = Na . Using this equation one can estimate the
value ε1

2 from a minimum value of Ψ(â) often called a residual:

€ 

ˆ ε 1
2 ≈

2Ψ ˆ a ( )( )min
(N fi )i=1,...,3∑ −Na

=
2Ψ ˆ a ( )( )min

N f*+Na −m
. (52)

If all assumptions are correct, the estimation by Eq. (52) should be close to the
assumed ε1

2.  A significant increase of the estimated 

€ 

ˆ ε 12 over expected ε1
2 can

be considered as an indication of unaccounted biases and/or inadequate
assumptions about random errors in measurements or a priori data sets. The
consistency checks relying on estimates 

€ 

ˆ ε 12 from the residual commonly is
used in remote sensing and other applications. For example, the effects of
unaccounted biases in both measurements and forward modeling on retrievals
of aerosol properties from ground-based observations using the residuals in
observation fits have been analyzed [8].

4.6 Lagrange multiplier selection

Sections 4.3-4.4 provide quantitative definitions of Lagrange multipliers.
However, in reality the detailed information required for an explicit definition
of a priori constraints may not be available. In such situations the following
recipes and discussions may be useful.

For constraining a retrieval by a priori estimates a* as in Eqs. (33-34), one
can use information about typical magnitudes and variabilities of the
parameters a. For example, in atmospheric remote sensing applications,
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climatological data sets are often used as a* [9]. If actual observations are not
available one can imply a priori estimates a* from known ranges of ai
variability:

 a* = <a> = (amax – amin)/2  and εa* = (amax – amin)/4.        (53)

This equation assumes the interval [amax; amin] as 95% confidence interval [<a>
+ 2 ε ; <a> - 2 ε]. These estimates a* are biased to the middle of the interval
[amax; a min] (or to the climatological values). However, this bias is usually
suppressed by a small γ. Indeed, the standard deviations εa determined from
Eq. (53) (or from climatology) are usually much larger than the measurement
errors. Correspondingly, the Lagrange multipliers defined via the ratio of
variances defined in Eq. (34c) are likely to have small values.

The strength of smoothness constraints in Eqs. (43-45) is linked with
known values of the derivatives of the retrieved y(x). If an explicit analysis of
derivatives ∂my/∂xm is not feasible, the strength of smoothing can be implied
from known least smooth of all a priori known y(x). For example, Eq. (45) can
be replaced by the inequality [9]:

  

€ 

γ ≤
εf *

2

bm( )max
 Na−m( ) Δx( )−2m+1, (54)

where (bm)max is the norm of the m-th derivatives of “most unsmooth” function
y(x). Indeed, the constrained inversion Eq. (45) with γ given by Eq. (54) limits
the retrievals to the functions y(x) with the norm of the m-th derivatives being
comparable or smaller  than (bm)max, i.e. the retrieval of y(x) much less smooth
than the  “most unsmooth” y(x) is not allowed.

Thus, even if actual a priori data are not available, the values of Lagrange
multipliers can be determined using Eqs. (53-54) before implementing actual
inversion, or in another words prior to performing the inversion. This is a
difference and a possible advantage of the approach [7-9] described here with
respect to a majority of techniques established for determining Lagrange
multipliers. Conventionally (see discussions [19,36,41]), the Lagrange
multiplier is chosen from analysis of the sensitivity of the minimized quadratic
form Ψ(a )  [such as given by Eq. (22)] to the weighting balance between
contributions of measurements and a priori terms. The main idea, employed
with some technical differences in many developments [1, 2, 36, 42] is that γ
should be both large enough (γ > 0) for enforcing (via constraints) a stable
unique solution and small enough for allowing the algorithm to achieve a
reasonably small value of minimized quadratic form Ψ(a). Usually a
reasonably small value means a value that can be explained by expected
presence of normal noise (with no biases) in the measurements. As discussed
above [Eqs. (17, 51)], for such noise the residual is χ2 distributed with m-n
degrees of freedom and an expected value of <2Ψ(a)>= (Nmes–Npar)ε2

mes for
Ψ(a) defined via weight matrices.
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The same idea is utilized in the L-curve method [42] where a burden
between measurements and the a priori terms is visualized by plotting the a
priori norm, i.e. the a priori term in the total Ψ(a), versus the measurements
norm, i.e. the measurements term in the total Ψ (a ),  with γ as a function
parameter. This plot has an L-shaped corner showing a point with a specific
value of γ of optimum balance between measurement minimization and a
priori terms.

In spite of the clear rationale and wide use of this optimum balance
criterion for determining the Lagrange multiplier, there are shortcomings in
employing this principle. For example, the technical implementation of this
principle is very challenging if more than one a priori constraint is needed in
the same inversion algorithm; i.e., if the determination of more than one
Lagrange multiplier is required. Also, the implementation of a conventional
determination of the Lagrange parameter is rather unclear in inversions of
non-linear equations f(a). Non-linear inversions (see Section 5) use the first
derivatives that are functions of the solutions. Therefore the optimum balance
between measurements and a priori constraints is also a function of the
solution. Correspondingly, finding optimum constraints for non-linear
inversions requires extensive effort considering the entire space of possible
solutions. In contrast, determining optimum constraints, e.g. by Eqs. (53-54),
prior to the inversion relies only on the knowledge of the variances of errors in
measured and a priori data. Such definition of a Lagrange multiplier is
independent of the forward model and can be employed equally in both linear
and non-linear algorithms. Also, knowledge about error statistics usually is
established independently for each data set. Therefore, once the Lagrange
multiplier is determined for a single type of a priori constraint it can be used
with no changes in the inversions employing other types of a priori
constraints.

Another and more fundamental issue is that the principle of optimum
balance is based on an understanding of the limited sensitivity of observations
with respect to the retrieved characteristic, but not on considerations of the
available a priori information. For example, if observations are not sensitive to
sharp oscillations of y(x) then a unique inversion of such measurements is
possible only if the search for solutions is restricted to smooth functions y(x).
Applying smoothness constraints enforces such restrictions and therefore
enforces a unique and stable solution. However, the fact of achieving
uniqueness and stability of the solution does not guarantee the reality of the
solution. In principle, any unsmooth y(x) resulting in the same observations
can be a real solution. In other words, the development of a successful
retrieval scheme should include two kinds of efforts: (i) identifying type and
strength of constraints required for assuring the uniqueness of the solution, (ii)
clarifying the realism of a priori information assumed by applying identified
constraints. In this regard the approach discussed here gives useful insight for
relating employed a priori constraints to actual properties of retrieved
characteristics; for example, Eqs. (53-54) allow researcher to relate the values
of Lagrange parameters with variability ranges of magnitudes and derivatives
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of retrieved y(x). In actual applications (e.g. see [9]), the strength of constraints
with Lagrange  multipliers determined by Eqs. (53-54) acquired from
knowledge available prior to the inversion may be not sufficient for providing
satisfactory solutions. In such situations, the estimated γ can be corrected by
sensitivity studies similar to conventional approaches. Obviously, using these
corrected (increased) constraints, researchers would face the above raised issue
of constraint realism, since the increased constraints would exceed the actual
available a priori knowledge. In these regards, Eqs. (53-54) can be useful for a
quantitative evaluation of possible biases caused by increased a priori
constraints.

4.7 Limitations of linear constrains.

The difficulty of enforcing non-negative solutions is an essential limitation of
linear inversion methods. Indeed, the constrained Phillips-Tikhonov-Twomey
type linear inversions defined by Eqs. (19-20) do not have a mathematical
structure that allows filtering negative solutions even if the retrieved
characteristic is physically positively defined. For example, remote sensing is
known to suffer from the appearance of unrealistic negative values for
retrieved atmospheric aerosol or gas concentrations that are positive by nature.
Known techniques of securing non-negative solutions by Eqs. (19-20) force
positive retrievals through enhancement of a priori smoothness constraints.
For example, several studies [36, 42] suggest repeating linear inversion by
changing strength of a priori constraints until the final solution both satisfies
the positivity constraints and provides an admissibly accurate fit of the
measurements. In such manner, King [36] iteratively adjusted the value of
Lagrange parameter in Eq. (19). Similarly, Turchin et al. [42] iteratively
corrected a priori terms in the statistical equivalent of Eq. (19), where γ Ω  =
Ca

-1 and C a is considered an a priori “correlation” matrix. Such iterative
adjustments of γ  or a priori matrix Ca require more computations than basic
constrained inversions by Eqs. (19-20). However, the major concern of
implying non-negativity constraints relates to difficulties of conforming these
techniques to general methodological basis of constrained linear inversions.
Indeed, as was mentioned in Section 4.1, minimization of quadratic forms in
the constrained inversions formally is equivalent to assuming errors normality.
Correspondingly, Eqs. (19-20) are harmonized with statistical LSM
optimization. Study [42] attempted to integrate the non-negativity constraints
within a normal-noise framework by introducing a “cutting” normal curve;
i.e., forcing zero probability for negative values and retaining a normal
distribution for positive values. Such artificial cutting can hardly be accepted
because it contradicts the proven symmetry of a Gaussian curve that is a
fundamental property of normal noise distribution.

In contrast to Eqs. (19-20), certain types of non-linear iterations invert
linear systems and naturally provide non-negative solutions. For example, in
atmospheric optics, the relaxation techniques [14, 17] often are considered as
alternatives to linear methods (e.g., see discussions [1, 19]).
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The solution of the linear system 

€ 

f* =K a  by non-linear iterations
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 ai
p+1

= ai
p  fi

∗ fi
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 . (55)

is developed by Chahine [17]. This method is limited to application where
measured and retrieved characteristics are positively defined and the number
of measurements and unknowns are equal (i.e. K  is square). Also, for
convergence, square matrix K  must be diagonally dominant
(i.e.,

€ 

  K jj > K j ′ j ≠ j ). One can see that Chahine’s formula is different from both
LSM Eqs. (12) and constrained inversions Eqs. (19-20), (22-23). Namely,
instead of addition and subtraction in the linear methods, Eq. (50) is non-linear
and includes multiplication and division, thereby eliminating the negative and
highly oscillatory solutions occasionally appearing in linear matrix inversions.
However, the applicability of Eq. (55) to square and diagonal matrices K is a
serious limitation of Chahine’s iterations. Many inversion studies adopted
Chahine’s iterations to other situations. The most known generalization of Eq.
(55) was proposed by Twomey [14] for inverting overdetermined systems
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f* =K a  (where Nf > Na and K is rectangular):

€ 

ai
p+1 = ai

p   1 +   fj
* fj

p  −  1 
 
  

 
  ˜ K ji

 
 
 

 
 
 

j=1

N f
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€ 

˜ K ji denotes the elements of matrix K that are scaled to be less than unity. Eq.
(56) provides non-negative solutions while it has much broader applicability
than original Eq. (55). Nevertheless, Eq. (56) has been derived without
formalized analysis of the noise effects in the initial data. Such empirical
character of Chahine-like iterations makes it difficult for a researcher to use
Eqs. (55-56) as a basis for rigorous inversion optimization.

Thus, the non-negativity of solution is not an established constraint in the
theoretical foundation of linear methods. On the other hand, the empirically
formulated non-linear methods [Eqs. (55-56)] effectively secure positive and
stable solutions. Such a “weakness” of the rigorous linear methods indicates a
possible inadequacy in criteria employed for formulating the optimum
solutions. In Section 6 we discuss possible revisions in assumptions employed
for accounting for random noise in inversions. For example, it will be shown
that by using log-normal noise assumptions the non-negativity constraints can
be imposed into inversion in a fashion consistent with the presented approach
inasmuch as one considers the solution as a noise optimization procedure.

4.8 Alternatives to matrix inversion methods

The main formulas for implementing LSM [Eq. (12)] and linear constraint
inversions [Eqs. (19, 20, 23, 24, 32)] are written via a matrix inversion
operator. This operator is uncertain for ill-posed problems where the matrices
to be inverted [K in Eq(3), KTK in Eqs. (19-21), KTC-1K in Eqs. (12, 23), etc.]
tend to have zero determinant. This is why a number of studies associate
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solving ill-posed problems with the use of advanced numerical procedures
introducing an inverse operator to degenerated matrices. For example, an
inverse operator may be formulated by excluding eigensolutions, linear
combinations of unknowns, with zero eigenvalues (e.g. see [43]). Singular
value decomposition (SVD) is a particularly popular approach for inverting
degenerated matrices. SVD is an operation of linear algebra (see details in [4]),
that allow one to decompose a square matrix M as M = VIwA, where matrices
V and A are orthogonal in the sense that VTV = I and ATA  = I. Matrix Iw is
diagonal with the elements on the diagonal equal to wi.  Inversion of matrix M
trivially follows from this decomposition as M = ATI1/wVT. In the case of a
singular matrix M, the inverse matrix of M-1 is uncertain, because some values
wi are equal or close to zero. Correspondingly, by means of replacing wi = 0 by
a moderately small non-zero wi, singular matrix M  can be replaced by a
reasonably similar, non-singular “truncated” matrix M’ that can be trivially
inverted. Therefore, some theoretical developments consider applying SVD as
an alternative way of constraining linear-system solutions. For example, the
theoretical review by Hansen [42] considers a truncated SVD method as an
essential equivalent of Pillips-Tikhonov-Twomey constrained inversion by Eqs.
(19-20). The main concern of using the SVD technique instead of direct a
priori constraints comes from the fact that replacement of matrix M  with
truncated matrix M’ is formal and has no relation to the physics of an
application. Therefore using SVD should be accompanied by an analysis
clarifying how the solution space was restricted by using truncated matrix M’.
Such analysis is challenging, since some linear combinations of unknown
parameters excluded by truncation may not have clear physical meaning. Also,
SVD analysis becomes even more uncertain in non-linear inversions where
matrix M and it’s truncated analog M’ changes during iterations. On the other
hand, using SVD instead of direct matrix inversion is undoubtedly a useful
tool for improving implementation of constrained inversion. For example,
study [9] used SVD to solve a multi-term normal system [Eq. (32)]. In this
way the initially ill-posed problem is constrained by a priori terms in quadratic
form given by Eq. (30), and SVD is applied only for solving Eq. (32) that
improves the technical performance of inversion algorithm. Indeed, in case of
large matrices M, applying standard methods for matrix inversion can be
problematic even for non-singular M , while SVD always gives an inverse
operator.

Another alternative to matrix inversion is using linear iterations written by
Eq. (4). As discussed in Section 2, linear iteration always provides a solution,
even if a linear system [Eq. (2)] has singular matrix K. For example, steepest
descent method (e.g. see [44-45]) always converges to a solution (more in
Section 5). However, in case of singular matrices K, iterative methods provide
only one solution from many possible. Repeating iterations using different
initial guesses may provide information about the entire space of possible
solutions. However, building a domain of solutions in such a way is not
straightforward because it requires establishing a set of initializations
providing complete coverage of solution space. Also, in general, iterative
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methods are more time consuming than matrix inversion. For example,
steepest decent may require an enormous number of iterations for convergence
(e.g. see [3]).

The semi-iterative method of conjugated gradients is another popular
method of solving linear systems of Eq. (1) via Na iterations [4].  However,
applying conjugated-gradients algorithms to solving a quasi-degenerated linear
system (det(K) →  0) results in similar problems as conventional numerical
procedures used for inverting matrix (e.g., Gauss-Jordan elimination [4]).
Although, in the framework of the conjugated-gradients technique, some
uncertain components of solution can be suppressed and, as discussed in [41],
conjugated gradients may provide a solution close to that of truncated SVD.

There are many other non-matrix inversion methods that are not considered
here. Some techniques are based on concepts that are very different standard
methods of numerical inversion. For example, using neural networks [46] is a
technique that is popular in many applications for observations analysis. The
basic idea of neural networking is that prior to interpretation of observations,
the researcher establishes unique relations between observations and
unknowns via network “training”. Network “training” is an analysis that is, in
some sense, similar to identifying non-linear regressions between output and
input of forward model. Another example is generic-inversions methods that
rely entirely on forward simulations [47-48]. Such techniques implement
inversion by straightforward computer search for all solutions that admissibly
agree with the observations to be inverted. Study [40] proposed a technique
that can be considered as a combination of generic inversion with conventional
linear inversion. Specifically, the technique implements a large number of
inversions using Phillips-Tikhonov-Twomey [Eq. (19)] with different values of
Lagrange multipliers. The average result of such inversions is considered as a
suggested solution.

Thus, there are many techniques, only some of which are mentioned here,
that can provide an appropriate inverse transformation without implementing
direct matrix inversion. Some of these techniques may provide a reasonable
solution of ill-posed problems without using explicit a priori constraints.
However, in comparing those methods against LSM-based constrained
inversion [Eqs. (19, 20, 23, 24, 32)], one should realize that each method a
priori limits a space of possible solutions. For instance, SVD inversion
excludes some solutions via matrix truncation; iterative solutions depend on
the initial guess; generic inversion considers only solutions included in a
search; neural networks are constrained by training process, etc. Therefore,
applying all these techniques to an ill-posed problem may result in different
solutions from different techniques. These differences reflect differences in
employed a priori constraints. Hence, the methods adopting the most reliable
a priori constraints provide the best solution. In this regards, applying a priori
constraints in a manner consistent with statistical optimization, as shown in
Section 4.2, give rigorous and a clear concept for using a priori constraints
and combining various data in single inversion. Contrary, absence of direct
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optimization of statistical properties in some inversion approaches can be
considered disadvantageous.

5. Optimization of non-linear inversion

Sections 2-4 discussed inversions procedures only for the case of linear
forward model f(a) in Eq. (1). However in practice, and particularly in remote-
sensing applications, the majority of physical dependencies f(a) are non-linear.
The purpose of this Section is to discuss inversion of a non-linear Eq. (1) and
to outline the differences and similarities between linear and non-linear cases.

5.1. Basic inversions of non-linear equation system

For a case of non-linear functions fj(a), Eq. (1) usually is solved numerically
by iterations relying on linear approximations. Namely, for points â  in the
close neighborhood of solution 

€ 

′ a , f(a) can be expanded in Taylor series:

€ 

f ′ a ( ) = f ˆ a ( ) +K ˆ a ′ a − ˆ a ( ) + o ′ a − ˆ a ( )2
+ ...  , (57)

where Kâ is the Jacobi matrix of the first derivatives 

€ 

∂f j ∂ai in the near

vicinity of â; 

€ 

o ′ a − ˆ a ( )2  denotes the function that approaches zero as  

€ 

′ a − ˆ a ( )2

when  

€ 

′ a − ˆ a ( )→ 0 .  Hence, neglecting all terms of second or higher order in
Eq. (57), fj(a) can be considered as linear functions. Such a linear
approximation is insufficient to solve Eq. (1) by Eq. (3) directly through
inverse transformation, but can be employed successfully for iterative
correction of guessed solution:

  ap+1 =  ap - ∆ap,    (58a)

Kp ∆ap  ≈ f(ap) - f*,     (58b)

where ap is p -th approximation of solution, ∆ap is a correction of ap that is
given by the solution of Eq. (58b), where K p is the Jacobi  matrix of

€ 

∂f j ∂ai calculated in the vicinity of ap. In the situation where Kp is square (Nf =
Na), the successive iterations can be implemented by employing inverse
matrices:

ap+1  = ap  - Kp
-1 (f(ap) - f*). (59)

This is the basic formula of Newton iterations to solve non-linear systems.

5.2 Optimization of non-linear solution in presence of random noise

In case of over determined non-linear fj(a) in Eq. (1), statistical optimization of
a solution can be included in the iterations by following MML as described in
Section 2. Namely, the solution of Eq. (1) should be performed as
minimization of quadratic form Ψ(a) given by Eq. (10) and the resulting non-
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linear Eq. (11a) can be solved by Newton iterations. Replacing f(ap) by
gradient ∇Ψ(ap)  and f* by 0, Eqs. (58) can be written as:

ap+1 =  ap - ∆ap,       (60a)

K∇,p ∆ap ≈ ∇Ψ(ap),        (60b)

where K∇ is a matrix of partial derivatives with elements

€ 

K∇,p{ } ji
=
∂ ∇Ψ( ) j
∂ai a p

.   (61a)

The matrix K∇,p  follows from Eq. (11) as:

K∇,p = Kp
TC-1 Kp + Dp (61b)

where the matrix Dp depends on second partial derivatives of f(ap) as follows:

€ 

Dp{ }ik =
∂ 2 f j (a

p )
∂ai∂ak

C−1(f (ap )− f* ){ }
jj=1,...,N f

∑ .   (61c)

Assuming that the elements of matrix Dp are small (e.g. if second derivatives
are close to zero) one can write:

K∇,p = Kp
TC-1 Kp + Dp

 ≈ Kp
TC-1 Kp, (61d)

Finally, using inverse matrices, MML solution can be written as:

ap+1  = ap  - (Kp
TC-1Kp)-1 ∇Ψ(a)

=  ap  - (Kp
TC-1Kp)-1  Kp

TC-1(f(ap)-f*).                (62)

This equation is known as the Gauss-Newton method [49]. This equation can
also be considered as Quasi-Newton method [3] due to using approximated
matrix K∇,p. Eq.(61d). For square matrices K , Eq.(62) can be reduced to
Newton iterations using matrix identity:(Kp

TC-1Kp)-1 = K p
-1C(Kp

T)-1. This is
why solving Eq. (2) with square K, as well as, Newton method [Eq.(58)] also
can be considered as a minimization of quadratic form [45].

It should be noted that quadratic form Ψ(a) [Eq. (11a)] can be minimized
by iterations different from Eq. (62). Many such methods also utilize gradient
∇Ψ(a) for the solution search. The steepest descent method deserves particular
attention among all other techniques.  This method correct solution guess ap

relying only on gradient ∇Ψ(ap) in point ap:

ap+1  = ap  - tp ∇Ψ(a)

 = ap  - tp Kp
TC-1(f(ap)-f*),                                    (63)

where the coefficient 0 < tp ≤ 1 is selected empirically to provide convergence.
Since gradient ∇Ψ(ap) shows the direction of the strongest local change of
Ψ(ap), the steepest descent always converges [3, 44-45]. However,
implementing this method may take a very long time [3].
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5.3 Levenberg- Marquardt optimization of iteration convergence

Implementing non-linear inversion by Newton-like methods requires assurance
of iteration convergence. Iteration by Eqs. (59, 62) may not converge or
converge to a wrong solution. The convergence difficulties may be caused by
inadequate choice of the initial guess and/or limitations of the linear
approximation used for guess correction. Indeed, for strongly non-linear
functions fj(a), the minimized form Ψ(a) may have a complex structure with
several minima. The analysis of this structure is desirable prior to inversion.
However, when three or more unknowns are to be retrieved, such analysis is
practically not feasible. Usually, researchers repeat retrieval with a set of
initializations and select the best solution. The initializations and the criteria
for selecting the best solution are commonly established based on the physical
constraints of the application, experience, and intuition of the developers.
Also, a convergence of non-linear solutions can be improved by modifying
Eqs. (59, 62). The most established modification of Gauss-Newton iterations is
widely known as the Levenberg-Marquardt method [4,49]:

ap+1  = ap  - tp (Kp
TC-1Kp + γ D)-1  Kp

TC-1(f(ap)-f*), (64)

where matrix D and the coefficients 0 < tp  and 0 ≤ γ are selected empirically to
provide convergence. The matrix D is predominantly diagonal (unity matrix is
often chosen as D) and addition of the term γ D  to K p

TC-1Kp in Eq. (64) is
analogous to using a priori constraints in linear inversions. Specifically, the
matrix Kp

TC-1Kp can be singular on some of p-th iterations even if it is non-
singular in the solution neighborhood. Adding the term γ D to Kp

TC-1Kp helps
to pass the iteration process through areas of K p

TC-1Kp singularities. As
pointed out in [4], the Levenberg-Marquardt formula generalizes the steepest
descent method. Namely, Eq. (64) can be reduced to (63) by defining matrix D
in Eq. (64) as the unit matrix I and prescribing a large value to the parameter γ.
Thus, Eq. (64) always converge with appropriate γ.

The multiplier 0 < tp ≤ 1 in Eq. (64) is invoked mainly to decrease the
length of ∆a p, because the linear approximation may overestimate the
correction ∆ap.  Usually, tp is decreased by a factor (e.g. by 2) until a condition
Ψ(ap+1) < Ψ(ap) is satisfied. Underestimation of ∆ap does not lead to a
convergence failure and may only slow down the arrival to a solution. The
addition of the term γ D also reduces ∆ap. Correspondingly, using both γ D
(γ > 0)  and 0 < tp ≤ 1 in the same iteration may seem redundant because both
operations reduce ∆ap. However, using the multiplier tp is straightforward
(compare to adding γ D) and sufficient in the application with moderately non-
linear forward model with non-singular Kp

TC-1Kp. On the other hand, if the
matrix Kp

TC-1Kp is singular in some points ap, using tp ≤ 1 does not help and
inclusion of constraining term γ D is necessary. Thus, use of both tp and γ D
modifications in Levenberg-Marquardt [Eq. (64)] complement each other in
practice.
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5.4 Formulation of Levenberg- Marquardt iterations using statistical
formalism

This Section is aimed to show that statistical considerations analogous to those
in Section 4 can be useful for optimizing Levenberg-Marquardt iterations.

Gauss-Newton Eq. (62) trivially can be generalized for simultaneous
inversion of multi-source data. Specifically, Eq. (25) with non-linear forward
models fk(a) can be solved by multi-term equivalent of non-linear LSM :
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K
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, (65)

where Kk,p is Jakobi matrix of the first derivatives from fk(a) in the vicinity of
ap. As discussed above, employing linear approximations for non-linear
functions fk(a)  in Eq. (65) may result in a convergence failure. Therefore, if
some fk(a) are linear, it seems logical to expect fewer problems with
convergence. This idea can be elaborated by considering linear constraints
applied to non-linear iterations. Namely, the non-linear equivalent of Eq. (47b)
that solves Eq. (46) with non-linear f(a) can be written as:

€ 

 ˆ a p = ˆ a p+1 − Δˆ a p , (66a)
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K p
T W−1K p + γ 2Ωm + γ 3Wa*

−1 

 
 

 

 
 Δˆ a p =

                       = K p
T W−1 f ˆ a p( )− f *( ) +γ 2Ωm ˆ a p +γ 3Wa*

−1 ˆ a p − ˆ a *( )
,  (66b)

where  Ωm =  Sm
TSm . Although, Eq. (66b) is constrained by a priori terms,

solution âp may fail to converge because at initial iterations (p=1,2,…) the
constrained non-linear Eq. (66) does not differ significantly from non-
constrained Eq. (62), similar to basic Gauss-Newton iterations by Eq. (62).
Indeed, if the initial guess is far from the solution, the values (fj(ap)- fj*) are
large and the measurement term dominates over a priori terms because the
values of the Lagrange multipliers γ2 and γ3 are typically small. A priori terms
start to matter only when fitting differences (f(ap)-f*) reach the level of
measurement accuracy ε1.  Therefore, some enhancement of a priori terms at
initial iterations may improve performance of Eq. (66). This idea can be
elaborated in the following considerations.

 Each p-th iteration in Eq. (66) assumes the solution of the following
overdetermined linear system:

€ 

K1,p  Δa p ≈ f1(a p )− f1* +Δf1* +Δf1,p
lin

K2,p  Δa p ≈ f2 (a p )− f2
* +Δf2

* +Δf2,p
lin

K3,p  Δa p ≈ f3 (a p )− f3* +Δf3* +Δf3,p
lin

 

 
  

 
 
 

 ⇒  
K p  Δa p ≈ f (a p )− f* +Δf* +Δfplin

Sm  Δa p = Sma
p − 0* +Δ(Δma)*

Δa p = a p − a* +Δa*

 

 
  

 
 
 

, (67)

where 

€ 

Δfk,p
lin denotes the errors of using the linear approximation of ( fk(ap)-fk*)

in the vicinity of ap. In contrast to the linear case [Eq. (46)], Eq. (67) is written
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via differences ∆ap. Another difference is that the first equation in system (66)
includes linearization errors 

€ 

Δf lin . As discussed in Section 4, LSM
optimization weights the contributions inversely to variances εk

2 of errors ∆fk
*

[see Eqs. (29-31)]. Such weighting does not account for linearization errors

€ 

Δf lin  and, therefore, optimizes results only in close vicinity to the actual

solution where 

€ 

Δf lin  are small. Accounting for 

€ 

Δf lin can be introduced into
LSM weighting by using ε1

2+(ε1,lin )2 instead of ε1
2 in the Lagrange multipliers

definition [Eq. (33b)]. The value of the ∆f1
lin variance is not known at each

point ap, but can be estimated from the value of the residual, i.e. analogously
to Eq. (52) one can write the following:

€ 

ˆ ε 1
2 + (ˆ ε 1,lin (ap ))2 ≈

2Ψ(ap )
(N f i )i=1,...,3∑ −Na

=
2Ψ(ap )

N f *+Na −m
. (68)

Using this equation, Eq. (30) can be re-written for non-linear iterations:

€ 

γ k a
p( ) =

ˆ ε 1
2 + ( ˆ ε 1,lin (ap ))2

ε k
2 ≈

2Ψ(ap )
ε k

2 (N f i )i=1,...,3∑ −Na( )
. (69)

This definition of the Lagrange multiplier accounts for higher linearization
errors at earlier iterations. In close vicinity of the solution 

€ 

′ a , where ∆ f1
lin is

close to zero, Eq. (68) is reduced to Eq. (52). Hence, utilizing “adjustable”

€ 

γ k (k ≥ 2) in Eq. (66) improves convergence while the final solution retains the
same statistical properties.

Derivations similar to those given by Eqs. (67-69) can be used even if
actual a priori information is not available. For instance, if there is no a priori
knowledge about magnitudes of unknowns or their correlations (smoothness),
one can require such constraints on corrections ∆ap. Indeed, the restrictions on
∆ap = ap - ap+1 would not restrict the area of admissible solutions. For example,
assuming that linearization may cause an overestimation of ∆ap, one may force
∆ap to small values in order to retain monotonic convergence. Such constraint
limits departures of ap+1 from a p, but it does not limit the values ap. The
possible negative side effect of limiting ∆ap is a larger number of iterations if
the initial guess a0 is taken far from the real solution. Similarly, retrieving
functions y (x ) of ai = y (xi), one may require smooth corrections

€ 

Δy p x( ) = y p+1 x( )− y p x( ) . This does not put constraints on retrieved y(x) and,
even if y0(x) was smooth, a large number of smooth corrections ∆yp(x) may
result in unsmooth 

€ 

y p+1 x( ) . Thus, Gauss-Newton iterations can be
implemented with use of constraints on ∆ap as follows:
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Here the second and third equations constrain smoothness and magnitudes of
the corrections 

€ 

y p x( ) , respectively. Hence, Gauss-Newton iterations of Eq.
(62) can be implemented as a multi-term LSM solving Eq. (70):

€ 

Δˆ a p+1 = ˆ a p  -  K p
T W−1K p + γ 2Ωm + γ 3Wa*

−1 

 
 

 

 
 
−1

K p
T W−1 f ˆ a p( )− fk

*( ) . (71a)

Lagrange multipliers γ2 and γ3 can be determined analogously to Eq. (69) as:

€ 

γk a
p( ) =

ˆ ε 1
2 + ( ˆ ε 1,lin (ap ))2

ε k
2 ≈

2Ψ(ap )
ε k

2 N f *− Na( )
. (71b)

Following considerations of Section 4.6, the errors ε2 and ε3   can be
established from the general knowledge of physically admissible variability of
magnitudes of ai and/or derivatives of retrieved 

€ 

y p x( ) .
Thus, the above derivation that optimizes the solution by constraining ∆ap

resulting in Eq. (71), which is analogous to Eq. (64), provides additional
insight to the formulating term γ D in the Levenberg-Marquardt iterations.
Such an approach is employed in inversion algorithm [9] and shown to be
efficient in practice for deriving aerosol properties from remote-sensing
observations.

6. Possible adjustments to assumption of Normal noise

Most inversion-algorithm-optimizing solutions are based on the normal noise
assumption when in the presence of random noise (see Sections 3-4). This
includes even algorithms that are not based on statistical formalism, since
minimization of quadratic forms is formally equivalent to assuming of Normal
noise. However, in scientific literature, one can find numerous attempts of
using alternative noise assumptions. Indeed, MML given by Eq. (8) does not
assume this specific type of PDF and gives an optimized solution for any noise
distribution, provided the assumed noise distribution is close to reality. For
example, assuming that P(fj(a)-fj*) ~ exp(-(fj(a)-fj*)) leads to the minimax
methods that differ from the LSM search for the least sum of absolute
deviations. The details of implementing minimax and other methods based on
the noise assumptions alternative to normal noise can be found in various
textbooks [3-4]. This Section discusses only a few modifications of the
Gaussian noise assumption aimed to overcome particular difficulties in
performance of the LSM.

6.1. Non-negativity constraints

As was discussed in Section 4.7, the difficulty in securing positive solutions in
the retrieval of non-negative characteristics is a limitation of constrained linear
inversion. This issue can be addressed by using a lognormal noise assumption
in retrieval optimization [7-9]. Such assumption of lognormal noise leads to
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implementing inversions in logarithmic space, i.e. employing logarithmic
transformation of forward model.

Retrieval of logarithms of a physical characteristic, instead of absolute
values is an obvious way to avoid negative values for positively defined
values. However, the literature devoted to inversion techniques tends to
consider this apparently useful tactic as an artificial trick rather than a
scientific approach to optimize solutions.  Such misconception is probably
caused by the fact that the pioneering efforts on inversion optimization by
Phillips [11], Tikhonov [12] and Twomey [13] and many later theoretical
considerations (e.g. Hansen [41]) were devoted to solving the Fredholm
integral equation of the first kind, i.e. a system of linear equations produced by
quadrature. The problems addressed by these methods are the retrieval of
aerosol size distribution [35] or temperature profile of the atmosphere [19] by
inverting spectral dependence of optical thickness. Considering optical
thickness as a function of the logarithm of the aerosol concentrations or
temperature profile requires replacing the initial linear equation f  = K  a by
nonlinear ones fj = fj(lnai). On the face of it, such a transformation of linear
problems to non-linear ones is not enthusiastically accepted by the scientific
community as an optimization. On the other hand, in cases when a forward
model is a nonlinear function of parameters to be retrieved (e.g., atmospheric
remote sensing in cases when multiple scattering effects are significant), the
retrieval of logarithms is accepted as a logical approach. Besides, as discussed
in Section 4.7 non-linear Chahine-like iterations have proven to be efficient
for inverting linear system. Rigorous statistical considerations also reveal
some limitations in applying Gaussian functions for modeling errors in
measurement of positively defined characteristics.  It is well known that the
curve of the normal distribution is symmetric. In other words, one may affirm
that the assumption of a normal PDF is equivalent to the assumption of the
principal possibility of obtaining negative results even in the case of physically
nonnegative values.  For such nonnegative characteristics as intensities, fluxes,
etc., the choice of a log-normal distribution for describing the measurement
noise seems to be more correct due to the following considerations: (i) log-
normally distributed values are positively-defined; (ii) there are a number of
theoretical and experimental reasons showing that for positively defined
characteristics, the log-normal curve with its multiplicative errors (see [27]) is
closer to reality than normal noise with additive errors. Also, as follows from
the discussion of statistical experiments [3], the lognormal distribution is best
at modeling random deviations in non-negatives values.  Besides, using the
lognormal PDF for noise optimization does not require any revision of normal
concepts and can be implemented by simple transformation of the problem to
the space of normally distributed logarithms. This fact is very important from
the viewpoint of both theoretical consideration and practical implementation
of MML under the lognormal noise assumption. For example, due to the
problem of differentiating P(fj(a)-fj*) ~ exp(-(fj(a)-fj*)), formulation of basic
equations for minimax solutions is questionable.
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Similar to the above considerations of non-negative measurements, there is
a clear rational in retrieving logarithms of unknowns instead of their absolute
values, e.g., ln(y(xi)) instead of y(xi), provided the retrieved characteristics are
positively defined. Although, the MML does not implicitly assume a
distribution of errors in the final solution, the statistical properties of the MML
solution are well studied (see [27]) and, therefore can be projected in
algorithm developments. In fact, according to statistical estimation theory, if
PDF is normal, the MML estimates are also normally distributed.  It is obvious
then, that the LSM algorithm retrieving y(xi) would provide normally
distributed estimates y(xi) and, therefore, it cannot provide zero probability for
y(xi) < 0, even if y(xi) are positively defined by nature.  On the other hand, the
retrieval of logarithms instead of absolute values eliminates the above
contradiction because the LSM estimates of ln(y(xi)) would have a normal
distribution of ln(y(xi)), i.e. a lognormal distribution of y(xi) that assures
positivity of non-negative y(xi). Moreover, studies [7, 9] suggest considering
the logarithmic transformation as one of the cornerstones of the practical
efficiency of Chahine’s iterative procedures. The derivations of Eqs. (55-56)
from LSM formulated in logarithmic space are given in the Appendices of
reference [9].

Thus, accounting for non-negativity of solutions and/or non-negativity of
measurements can be implemented in the retrieval by using logarithms of
unknowns (ai →  lnai) and/or measurements (fj →  lnfj). In many situations,
retrieval of absolute values or their logarithms is practically similar. This is
because narrow lognormal or normal noise distributions are almost equivalent.
For example, for small variations of non-negative value, the following
relationship between ∆a and ∆a/a is valid:

 ∆lna = ln(a + ∆a) - ln(a) ≈ ∆a/a,   ( if ∆lna << 1).  (72a)

Then, if only small relative variations of value a are allowed, the normal
distribution of lna is almost equivalent to the normal distribution of absolute
values a.  The covariance matrices of these distributions are connected as:

Clna≈ (Ia)-1 Ca (Ia)-1, (72b)

where Ia is a diagonal  matrix  with elements {Ia}ii = a i. Hence, for
measurements with small relative errors, use of lognormal or normal PDFs
with covariance matrices related by Eq. (72) should give similar results. Also,
since logarithmic errors can be considered approximately as relative errors, the
variances (εlnf)2 are unitless and, therefore, Eq. (30b) defining Lagrange
multipliers as the variance ratio becomes particularly useful. Practical
illustrations of using logarithmic transformations in inversion can be found in
reference [9].

6.2. Accounting for the data redundancy

A difficulty in accounting for data redundancy is another unresloved issue in
implementing optimized inversion. This issue has very high practical
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importance, although it is not often addressed in the literature on inversion
methodologies. For example, infinite enhancement of spectral and/or angular
resolutions in remote-sensing observation does not lead to accuracy
improvements in retrievals above a certain level.  Based on common sense this
can be explained by the fact that simple increase of the number of observations
Nf may lead to an increasing number of redundant measurements that do not
help to improve retrievals. Theoretical considerations (e.g. in Section 3),
however, do not assume any “redundant” or “useless” observations. Indeed,
performing 

€ 

N f j  straightforward repetitions of the same observation with
established unchanged accuracy, from a statistical viewpoint, simply means
that the variance of this particular observation fj should decrease by factor

€ 

N f j . Accordingly, the j-th elements of covariance matrix Cf should decrease
and the errors of retrieved parameters [Eqs. (15), (49)] should decrease
appropriately. Thus, from a theoretical viewpoint, repeating similar or even the
same observation always results in some enhancements of retrieval accuracy.
Such contradiction between practical experience and theoretical derivations
seriously limits the efforts on estimating retrieval errors, evaluating
information content of measurements and planning of optimum experiments.
For the multi-term LSM approach presented here, accounting for data
redundancy is also of particular importance. Indeed, individual data points
from observations of the same type usually are comparable in accuracy.
Therefore, it is unlikely, although possible, that inverting single-source data
would not lead to a discrimination of some individual observations. In a multi-
source inversion, the situation is different because an increase in the number of
observations in one of several inverted sets of data would lead to an increase
of the weight of this data set, even if the added observations were redundant
from a practical point of view. Indeed, in the minimized quadratic form of

€ 

Ψ a( )  in Eq. (29), the higher the value of the k-th term Ψk, the stronger the
contribution of the k-th data set on the solution. Using known relationships for
the χ2 distribution, Ψk can be estimated as Ψk ≤ Nk , i.e. the weight of the k-th
term in Eq. (29) is proportional to the number of measurements Nk in the k-th
data set. In order to eliminate this dependence of Ψk on Nk, it was suggested
[9] that for redundant observations, the accuracy of a single measurement
degrades as 1/Nk if several measurements are taken simultaneously, i.e.:

€ 

ε k
2 multiple( ) = Nk  ε k

2 single( ) , (73)

where the term “multiple” indicates that several analogous measurements are
made simultaneously. Correspondingly, Eq. (30b) can be written via accuracy
of “single” measurement as follows:

€ 

γ k =
N1 ε1

2 single( )
Nk  ε k

2 single( )
. (74)

This definition of γk makes the relative contributions of the terms γk Ψk in Eq.
(30a) independent of Nk, and therefore equalizes the data sets with different
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numbers of observation. Relationship (73) assumes that for data set with
“redundant” observations εk increases as

€ 

Nk . Such an increase can be caused
by the fact that the number of sources of random errors may increase
proportionally to the number of simultaneous measurements. For example,
increasing spectral and/or angular resolution in remote-sensing measurements
likely results in a decrease of the quality of a single measurement due to
increased complexity of the instrumentation and calibration. However, the
assumption given by Eq. (73) is of intuitive character since it is not based on
actual error analysis. Moreover, the developers of the instrumentation may
argue justifiably that accuracy should not degrade if several measurements are
taken at the same time. Therefore, it should be noted that Eq. (73) is
appropriate only for data sets where actual redundancy has been achieved.
Actually, the redundancy may be caused by other factors than instrumentation
limits. For example, increasing angular and spectral resolution of satellite
observations generally requires larger spatial integration and longer
measurement time. Both these factors contribute to an increase of retrieval
errors due to natural temporal and spatial variability of the atmosphere and
surface.

Thus, identification of measurement redundancy in practice is a difficult
effort that strongly relies on the experience of the developer. Nevertheless, it
can be advisable to consider data redundancy as a practical factor that may
affect retrieval. Namely, if Eq. (52) gives values much higher than the level of
expected measurement errors (and retrieval errors are much higher than
estimated from Eq.(49)), then it is likely that noise assumptions need to be
verified. In such cases the ratios N1/Nk can be good indications of magnitude
and direction of required adjustments in εk

2 in order to address domination of
the large inverted data sets over smaller ones. For example, assumption (73)
was employed successfully in aerosol remote-sensing retrievals [9], where
harmonization of the contribution of large sets of angular sky radiance
measurements with much fewer observations of spectral optical thickness is
beneficial. A similar principle was used in earlier studies [50].

7. Final recommendations

The considerations presented in this chapter were aimed to demonstrate that
many important and well established ideas of numerical inversion can be
combined and compliment each other in a single inversion methodology.
Namely, it is suggested to combine all measured and a priori data in a single
inversion procedure using the fundamental approach of MML. Under an
assumption of normal noise, such an approach results in a multi-term LSM
given by Eq. (32), where the contribution of each term is weighted by the
values of the errors in the corresponding data set. The discussion in Sections 4-
7 concludes that using LSM in the multi-term form allows fruitful connections
between such well known and established techniques and methodologies as
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standard LSM, Phillips-Tikhonov-Twomey constrained inversion, and Kalman-
filter type inversion methods, advocated in remote sensing by studies of
Rodgers [19]. From a technical viewpoint, the derivation of a multi-term LSM
is trivial and the main value of the approach presented is a deliberate
consideration of various inversion aspects and approaches with the purpose of
consolidating analogies and differences into a single unified concept. As a
result, in addition to some generalization of inversion equations, a number of
practically important conclusions and recommendations are proposed for
implementing numerical inversions. For example, Section 4 suggests
considering Lagrange multipliers as a ratio of error variances [see Eq. (30)],
where variances of a priori constraints are related explicitly to knowledge of
magnitudes of retrieved parameters. In the case of retrieval of smooth function
y(x), Lagrange multipliers can be written directly via maximum values of
derivatives of y(x). Section 4 also shows how smoothness constraints can be
implemented in the retrieval of non-equidistantly binned functions y(x) and
how different types of a priori constraints can be employed in a single
algorithm. Section 6 discusses the use of the multi-term LSM in non-linear
Newtonian iterations for optimizing accuracy of the non-linear retrieval in the
vicinity of a solution. Moreover, Section 6 shows that multi-term LSM can be
used for implementing Levenberg-Marquardt-type modifications improving
convergence of the non-linear iterations. Section 7 suggests modifications to
normal noise assumptions to account for non-negativity of the physical values
and addressing data redundancy. The lognormal noise assumption is applied
for non-negative values. Under such assumptions, the MML principle results
in a multi-term LSM written in logarithmic space. Also, Section 4 emphasizes
distinction between two aspects of solution optimization: (i) accounting for
distribution of errors in inverted data, and (ii) improving performance of
mathematical inverse operations, e.g. replacing matrix inversion by other
techniques. It is suggested that uniqueness of the solution should be assured by
combining all available measurements and a priori information in a multi-term
LSM. Then, potentially advantageous mathematical techniques such as SVD,
conjugated gradients, iterative search etc. can be used at the stage of solving
normal Eqs. (31) for improving the performance of the technical
implementation of multi-term LSM. For example, using steepest descent
iterations for implementing logarithmic LSM allows (see [9]) the derivation
Chahine-like iterations [17,14].

Finally, the derivations of the present chapter can be illustrated and
summarized by a single formula written for the rather general case when the
forward model is non-linear and a priori information on both magnitudes and
smoothness of retrieved function y(x) is available. If y(x) needs to be retrieved
from observations of two different characteristics z1(λ) = z1(λ;y(x)) and z2(λ) =
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z2(λ;y(x)) measured in a range of 

€ 

λi  (λ  can be angle, wavelength, etc.) then
the optimized solution can be obtained by iterations:

€ 

 ˆ a p = ˆ a p+1 − t pΔˆ a p , (75a)

where 

€ 

Δˆ a p  is a solution of the normal system:

€ 

γ kK1,p
T Wk

−1K1,p
k=1

2
∑ + γ 3Ωm + γ 4 Wa*

−1 

 
  

 

 
  Δˆ a p =

                       = γ kK k,p
T Wk

−1 fk ˆ a p( )− fk*( )
k=1

2
∑ +γ 3Ωm ˆ a p +γ 4 Wa*

−1
ˆ a p − ˆ a *( )

. (75b)

Here, fk is a measurement fk(

€ 

λi ) and a is a vector of a(

€ 

x j ). If the measured
functions zk(λ) can be both positive and negative then normal noise is assumed
and fk(

€ 

λi ) = zk(

€ 

λi ). If zk(λ) are positively defined (e.g. intensities) then the
lognormal noise is expected and fk(

€ 

λi ) = ln(zk(

€ 

λi )). Similarly, if y(x) can be
both positive and negative then normally distributed errors are expected in
retrievals and ai = y(xi). If y(x) is positively defined (e.g. concentration) then
lognormal retrieval errors are expected and ai =  ln(y(xi)). Symbols K k,p -
matrices of the first derivatives

€ 

K k,p{ } ji
=
∂f j λi( )
∂ai a p

calculated in the vicinity of ap; W… - weighting matrices defined by Eq. (30b).
The smoothness matrix 

€ 

Ωm  is determined via matrices of m-th differences Sm

as 

€ 

Ωm  = Sm
TSm if xi are equidistant. If xi are not equidistant, 

€ 

Ωm  is determined
via matrices of the m-th derivatives Gm as 

€ 

Ωm= Gm
T Wg*

-1Gm (see Section
4.3). Lagrange multipliers γk are determined by ratios of variances, i.e.:

€ 

γ1 = 1, and (for k ≥ 2)   

€ 

γ k =ε1
2 ε k

2 ≈ ˆ ε 1
2 a p( ) ε k

2    , (76)

where 

€ 

ˆ ε 1
2(a p )  is  an estimate of 

€ 

ε1
2 :

€ 

ˆ ε 1
2(ap ) ≈  2Ψ(ap ) ( N f ii=1,...,4∑ −Na ) . (77)

Here Ψ(ap) denotes the value of the residual of the p-th iteration defined as

€ 

2Ψ ˆ a ( ) = γ k fk ˆ a ( )− fk
*( )T

Wk
−1 fk ˆ a ( )− fk

*( )
k=1

2
∑ +γ 3 ˆ a TΩm a +γ 4 ˆ a − ˆ a *( )T

Wa*
−1

ˆ a − ˆ a *( ) .(78)

The variances 

€ 

ε k
2  (for k ≥ 2) are determined before implementing iterations. ε2

2

is the variance of the errors in the second set of measurements z2(λ). For the
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smoothness term (k =3), ε3
2 can be implied from the knowledge of y(x) m-th

derivatives:

€ 

ε3
* ≈

bm Δx( )2m+1

Na −m
   or   

€ 

ε3
* ≈

bm
Na −m( ) Δm x1( )

  (if ∆xi ≠ const) , (79)

where the first equation is for equidistant xi, the second one is for non-
equidistant xi (Section 4.3), <bm> is the average norm of the of y(x) m-th
derivatives [Eq. (40)]. If average derivatives are unknown, <bm> can be
implied using the m-th derivatives of the most unsmooth function y(x) (see
Section 4.6). For a priori estimates (k  = 4), ε4

2 is the variance of a priori
estimate of a1* and Wa* = Ca*/ε4

2. If actual a priori estimates ai* are not
available, then ai*, ε4

2 and W a* can be implied from the known variability
ranges of ai (Section 4.6).

Utilization of Lagrange multipliers dependent on residual Ψ(ap) in Eqs.
(76-77) helps to provide monotonic convergence of iterations. This operation
is functionally analogous to the Levenberg-Marquardt method (see Section
5.4). This modification helps to provide a monotonic decrease of Ψ(ap), i.e.
monotonic convergence of iterations. Moreover, if no a priori information
about the solution is available, the constraints can be applied to the p-th
correction ∆ap instead of a p. Using such constraints affects only the
convergence and does not bias the solution â. The correspondent multi-term
LSM (same as Eq. (75b) with no a priori terms in the right part) is a full
equivalent to the Levenberg-Marquardt method, with the only difference being
that the terms added for improving convergence are clearly related with
constraints on smoothness and magnitudes of ∆a p (see details in Section 5.4).
The coefficient 1 ≥ tp > 0 is used in Eq. (75a) similar to the Levenberg-
Marquardt method. If Ψ(ap+1) > Ψ(ap), tp should be decreased (e.g. as tp→ tp/2)
until Ψ(ap) is decreased.

If forward models fk(

€ 

λi ) are linear, no iterations are needed and  Eqs. (75)
can be simplified as

€ 

γ kKk
TWk

−1Kk
k=1

2
∑ +γ 3Ωm +γ 4Wa*

−1 

 
 
 

 

 
 
 ˆ a = γ kKk

TWk
−1 fk ˆ a ( )− fk

*( )
k=1

2
∑ +γ 4Wa*

−1
ˆ a *. (80)

Here γk are given by Eq. (76), with the difference that 

€ 

ε1
2  is fixed to the error

variance in the first data set (k = 1). The assumed

€ 

ε1
2  should be close to the

estimated 

€ 

ˆ ε 1
2 ˆ a ( )  obtained by Eq. (77) from the residual. A value of 

€ 

ˆ ε 1
2 ˆ a ( )

higher than assumed 

€ 

ε1
2  indicates inconsistency in the assumptions made. One

possibility is that the forward model needs corrections. Otherwise, adjustments
are needed in assumptions about errors in measurements or a priori data. For
example, in case the number of measurements Nk in the first (k = 1) and second
(k = 2) sets of observations are very different, the ε2

2 can be adjusted by a



104                                             OLEG DUBOVIK

factor N1/N2 in order to account for data redundancy in one of the sets (see
Section 6.2).

The covariance matrix of the random errors in the solution â can be
estimated in the linear approximation (Section 4.4):

€ 

C ˆ a = γ kKk
TWk

−1Kk
k=1

2
∑ +γ 3Ωm +γ 4Wa*

−1 

 
 
 

 

 
 
 
−1 ˆ ε 1

2 ˆ a ( ) . (81)

For the non-linear case, the derivative matrix Kk is simulated in the vicinity of
â.

Finally, linear equations (75b) and (79) can be solved by different methods.
For example, using inverse matrices reduce Eqs. (75) and (80) to a traditional
form of constrained inversion. Alternatively (Section 4.8), other numerical or
computer techniques, such as, SVD, conjugated gradients, iterations, generic
inversion, etc. can be used for solving Eqs. (75b) and (80).
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